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Abstract
Molecular dynamics simulations have been carried out of the radial distribution
function of the hard sphere fluid for a range of densities in the equilibrium
fluid and just into the metastable region. The first derivative of the hard-sphere
radial distribution function at contact was computed and its density dependence
fitted to a simple analytic form. Comparisons were made with semi-empirical
formulae from the literature, and of these the formula proposed by Tao et al
(1992 Phys. Rev. A 46 8007) was found to be in best agreement with the
simulation data, although it slightly underestimates the derivative at the higher
packing fractions in excess of about 0.45. Close to contact, within a few per
cent of the particle diameter, the radial distribution function can be represented
well by a second order polynomial. An exponential function, which has some
useful analytic features, can also be applied in this region.

A long-standing challenge of statistical mechanics is the prediction of the properties of a simple
liquid for a given pair interaction, φ(r). As the structure of simple liquids is dominated by the
intermolecular repulsive forces, a fluid of hard spheres is often used as a ‘reference’ fluid and
the effects of particle softness and attractive forces treated by perturbation theory [1]. The hard
sphere potential is

φ(r) =
{

∞, r � σ

0 r > σ ,
(1)

where σ is the hard sphere diameter. This potential is discontinuous at r = σ . The equation of
state of the hard sphere fluid is a fundamental quantity for this study, which can be expressed
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in terms of the compressibility factor, Z = P/ρkBT where kB is Boltzmann’s constant, T is
the temperature and P is the pressure, and ρ = N/V is the number density for N hard spheres
in volume V . The Carnahan and Starling (CS) formula [2] for Z is used here for incorporation
in analytic expressions

Z(ζ ) = 1 + ζ + ζ 2 − ζ 3

(1 − ζ )3
(2)

where ζ = πρσ 3/6 is the packing fraction. The marginally more accurate Kolafa equation of
state [3, 4] is used in conjunction with the simulation data

Z(ζ ) = 1 + ζ + ζ 2 − 2(ζ 3 + ζ 4)/3

(1 − ζ )3
. (3)

In both cases the radial distribution function at contact of the spheres, g(σ ) or simply g0 for
conciseness, is given by g(σ ) ≡ g0 = (Z − 1)/4ζ [1, 2].

Another quantity that occurs in perturbation and other theories of simple fluids and colloids
using a hard sphere reference fluid is the slope of g(r) at contact, y1, (e.g., see [5, 6]),

y1(ζ ) ≡ σ
d

dr
g(r)|r=σ (4)

or y1 ≡ g′. Unfortunately, an expression for y1 as a function of packing fraction is more
difficult to obtain than it is for Z . Semi-empirical expressions for the radial distribution function
of the hard sphere fluid are available (e.g., [7]), whose derivative with respect to separation at
contact could be taken. An application of scaled particle theory to calculate the first and second
derivatives of g(r) at contact is reported in [8]. The approach adopted here is to base y1 on
integral equation solutions which are accurate at low density. For example, the Percus–Yevick,
PY, solution for y1 is [9]

yPY
1 (ζ ) = −9

2

ζ(1 + ζ )

(1 − ζ )3
, (5)

which we call yPY
1 . There are also semi-empirical modifications of the PY solution, for

example, from Tao et al [9, 10],

yTSM
1 (ζ ) = −9

2

ζ(1 + ζ )

(1 − ζ )4
. (6)

Note the difference in the exponent of the denominator between (5) and (6). Another
approximation for y1 was given by del Rio and Benavides [11],

yRB
1 = yPY

1

(
1 + ζ

4
+ ζ 2 + 4ζ 3

)
. (7)

It is convenient to define the quantity

C(ζ ) = −y1(ζ )/g(σ, ζ ) = −σ d(ln(g(r)))/dr |r=σ , (8)

as in each of the above cases it is more slowly varying with ζ than y1. Adopting the Carnahan–
Starling expression for the radial distribution function at contact of the spheres, the C function
in these approximations (with the superscripts of y1 now taken as subscripts)

CPY(ζ ) = 9ζ
(1 + ζ )

(2 − ζ )
, (9)

CTSM(ζ ) = 9ζ
(1 + ζ )

(2 − ζ )

1

(1 − ζ )
, (10)
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Figure 1. The radial distribution function, g(r), computed by MD simulation with N = 4000
particles for a set of packing fractions. The curves are second order polynomial fits to the simulation
points. Key: from bottom to top ζ = 0.250, 0.300, 0.350, 0.400, 0.450 and 0.490.

and

CRB(ζ ) = 9ζ
(1 + ζ )

(2 − ζ )
(1 + ζ/4 + ζ 2 + f ζ 3). (11)

where f = 4. We have also computed a variant of (11) using instead f = 3.
Molecular dynamics (MD) and Monte Carlo (MC) computer simulations are the nearest

to an exact realization of the hard sphere system we can achieve. The purpose of this work is
to compare the above analytic predictions for C(ζ ) with the same function computed directly
by MD. The results of previous MC simulation studies of y1 [12–14] are also used in our
analysis. Systems consisting of a variable number (N) of hard spheres in the simulation cell
were considered, with N in the range 192–10 976.

Simulations were carried out typically for 50–100 million hard sphere collisions, with
packing fractions in the range ζ = 0.05–0.53 (the fluid freezing value for hard spheres is
0.494 [15]), so a number of the higher density states simulated were in the metastable branch
of the phase diagram. Some representative radial distribution functions of the hard sphere fluid
for N = 4000 systems at various packing fractions are given in figure 1. Figure 1 shows MD
generated g(r) between r = 1.0 and 1.03 in hard sphere distance units (i.e. σ ≡ 1) for ζ values
between 0.25 and 0.49. As can be seen, the value of g0 and the first derivative of g(r) at contact
increase with packing fraction, in the latter case revealed by the more ‘cusp’-like appearance
of g(r) as r → σ .

The contact derivative of g(r) or y1 can be evaluated by fitting g(r) in the vicinity of the
contact separation, i.e. for r � σ + xc, to an expression which can then be differentiated.
The fitting of g(r) is not a trivial matter as both the range of the fit, xc, and the functional
form chosen to represent g(r) can affect the value of y1, and both must be chosen with care.
A polynomial analytic form was chosen taking a low order polynomial and a suitable value
of xc. Trial and error led to the adoption of a non-linear least square fit to the formula,
g(r) = g0 + ax + bx2, where x = r − σ [17], with xc = 0.03σ . This was found to be a
good compromise, as smaller values of xc led to greater statistical fluctuations in the values
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Figure 2. A plot of C(ζ ) against ζ . ‘MD’ are the MD values (using a second order polynomial
in r and xc = 0.03) in the thermodynamic limit. ‘MC’ are the averaged Monte Carlo values
from [12, 13]. PY is the Percus–Yevick solution from equation (9). The del Rio and Benavides
formula from [11] given in equation (11) is denoted as ‘RB f = 4’, and a modification of this
formula with ‘ f = 3’ is also shown.

of y1 without apparent change in its value. Larger values of xc tended to underestimate the
value of y1 (this being a sign that for xc > 0.03 the second order polynomial is not a suitable
functional form). At each packing fraction, g(σ ) and the first derivative, g′(σ ), were obtained.
These data were individually extrapolated with N−1 (found appropriate for thermodynamic
properties [16]) to infinite N by least squares fit, and the MD derived C values quoted herein
are for these values in the estimated thermodynamic limit. The g(σ ) were obtained from the fit
to the radial distribution function, and also from the average Z value from the MD simulation by
the virial and collision rate routes [15], and then using g0 = (Z −1)/4ζ . In the thermodynamic
limit there was no statistically significant difference between these values and those derived
from the Kolafa equation of state, and therefore the main source of statistical uncertainty in C
was in the value of y1.

Figure 2 shows the MD C(ζ ) in the thermodynamic limit of this work. These values fall
on the same smooth curve (within the mutual simulation statistics) as the literature Monte Carlo
derived values [12, 13], and these data represent therefore a precise and accurate representation
of the density dependence of C . The Percus–Yevick (PY) function of equation (9) agrees well
with the simulation data below about 0.15 but increasingly underestimates the simulation data
for higher packing fractions. Also, CRB is noticeably below the MD curve, and the variant with
f = 3 in equation (11) is in worse agreement.

In the spirit of CRB(ζ ), the C(ζ ) values from the MD and previous MC treatments were
fitted to the function

CMD = 9ζ
(1 + ζ )

(2 − ζ )
(1 + c1ζ + c2ζ

2 + c3ζ
3), (12)

by the least squares method, which gave 0.979 91, −0.817 47 and 6.442 03 for c1, c2 and c3,
respectively. In figure 3, the formula in equation (12) is compared with the function proposed
by Tao et al [9], which is defined in equation (10) and denoted by CTSM. This function, it
can be seen, follows the MD-derived curves, essentially exactly for about ζ < 0.45, with
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Figure 3. A plot of C(ζ ) against ζ . The ‘MD Fit’ curve is from equation (12). ‘TSM’ is the
formula of Tao et al [9] given in equation (10). The MD data points are using g(r) = g0 exp(Ax)

with xc = 0.03.

larger departures from the simulation data with increasing packing fraction. The symbols in
this figure represent C obtained using the fit function, g(r) = g0 exp(Ax), again fitted in the
range 0 � x � xc for xc equal to 0.03. For this formula, C = −A, and because there is
essentially only one free parameter to fit (apart from g0), rather than two in the case of the
second order polynomial, the statistical variation in C is much less. The statistical uncertainty
is more noticeable for lower packing fractions. The exponential function representation of the
radial distribution function is very good near contact, as can be seen in figure 4. This figure
shows the same MD-generated radial distribution functions and intervals as in figure 1, except
that they are plotted on a logarithmic scale. The linear regression fits (corresponding to the
exponential representation of g(r)) are an excellent fit to the MD data for most of the separation
range shown.

To conclude, using molecular dynamics simulation data a simple formula (equation (12))
has been obtained for the normalized contact derivative of the radial distribution function, C , in
the thermodynamic limit as a function of packing faction. This applies in the whole of the fluid
range and part way into the metastable region (up to ζ = 0.53). In the fitting procedure it is
most satisfactory to use a low order polynomial and minimize the fitting range, the practicable
value of the latter depending on the accuracy of the radial distribution function provided by
the simulation. The expression proposed by Tao et al [9] is in very good agreement with this
function up to a packing fraction of about 0.45. Close to contact, the radial distribution function
can be represented well by a low order polynomial or an exponential function (see figure 4).
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Figure 4. The radial distribution function, g(r), computed by MD simulation with N = 4000
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collaboration. The work has been partially supported by the Polish Ministry of Education
and Science.

References

[1] Hansen J P and McDonald I R 1986 Theory of Simple Liquids 2nd edn (London: Academic) chapter 6
[2] Carnahan N F and Starling K E 1969 J. Chem. Phys. 51 635
[3] Boublik N F and Nezbeda I 1986 Coll. Czech. Chem. Commun. 51 2301
[4] Ayala de Lonngi D and Lonngi Villanueva P A 1991 Mol. Phys. 73 763
[5] Song Y, Mason E A and Stratt R M 1989 J. Phys. Chem. 93 6916
[6] Scirocco R, Vermant J and Mewis J 2005 J. Rheol. 49 551
[7] Trokhymchuk A, Nezbeda I, Jirsák J and Henderson D 2005 J. Chem. Phys. 123 024501
[8] Siderius D W and Corti D S 2006 Ind. Eng. Chem. Res. ASAP article 10.1021/ie051038t,

S0888–5885(05)01038–9
[9] Tao F M, Song Y and Mason E A 1992 Phys. Rev. A 46 8007
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